This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Electrochemical Studies on C,N,S and C,N,Se Ring Systems—An Overview

René T. Boeré^a; Klaus H. Moock^a

^a Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada

To cite this Article Boeré, René T. and Moock, Klaus H.(1994) 'Electrochemical Studies on C,N,S and C,N,Se Ring Systems—An Overview', Phosphorus, Sulfur, and Silicon and the Related Elements, 93: 1, 451-452

To link to this Article: DOI: 10.1080/10426509408021899 URL: http://dx.doi.org/10.1080/10426509408021899

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ELECTROCHEMICAL STUDIES ON C,N,S AND C,N,Se RING SYSTEMS - AN OVERVIEW

RENÉ T. BOERÉ AND KLAUS H. MOOCK

Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4

Abstract Electrochemical studies of 5, 6, 7 and 8-membered rings containing catenated C-N-S and C-N-Se groups have been undertaken using cyclic and a.c. voltammetry. The results find a satisfying interpretation using semi-empirical MO theory. The results provide an important insight into the utility of such ring systems for the design of molecular metals.

ELECTROCHEMICAL STUDIES

1,2,3,5-Dithiadiazoles and diselenadiazoles, 1, have been studied electrochemically starting from both the 6π cation (as the PF₆⁻ salts) and 7π neutral radicals (by dissolution of their dimers in CH₂Cl₂ or CH₃CN). The neutral dimers are the preferred starting compounds.¹ These rings demonstrate both reversible

$$R \longrightarrow \begin{bmatrix} R & -1e^{-} & -1e^{-} & R & -1e^{-}$$

$$\begin{array}{c|c} (a) & \text{NSiMe}_3 & \text{SeCl}_4 \\ \text{CF}_3 & \text{N(SiMe}_3)_2 & \text{CH}_3\text{CN} \end{array} \rightarrow \begin{array}{c|c} \text{CF}_3 & \text{N} & \text{Se} \\ \text{N} & \text{Se} & \text{CI} & \text{N} & \text{Se} \\ \end{array}$$

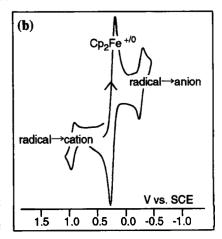


FIGURE 1 (a) Synthesis of CF₃CN₂Se₂; (b) cv in CH₂Cl₂ with reference

oxidation and reversible reduction (to the 8π anions) in almost all cases [R=4-X-C₆H₄, X=MeO, CH₃, H, Cl, CF₃, E=S,Se; R=Me₂N, CH₃, H, Cl, CF₃, E=S; R=CF₃, E=Se.] These rings can therefore exist in a triad of oxidation states, a requirement for their use in building molecular metals.

1,2,4,6-thiatriazines, 2, can also exist in three stable oxidation states, and this has been verified electrochemically. The voltammograms clearly show the

presence of both the monomer and the dimer of the 7π neutral ring system (whether or not we proceed from the PF_6^- salt of the cation or from the neutral dimer.)

1,3,5,2,4-trithiadiazepine, **3**, is a stable 10π aromatic heterocycle. It undergoes irreversible oxidation at +1.85 V vs. SCE and irreversible reduction to the 11π anion at the very high potential of -1.69 V, a stability range of 3.54 V.

1,5,2,4,6,8-dithiatetrazocines, **4**, are another example of a stable 10π aromatic ring system (so long as they bear aryl or alkyl substituents; the parent heterocycle is unknown.) They undergo irreversible oxidation to the 9π cation and

$$R \xrightarrow{N \longrightarrow N} R \xrightarrow{-1e^{-}} R \xrightarrow{N \longrightarrow N} R \xrightarrow{-1e^{-}} R \xrightarrow{N \longrightarrow N} R \xrightarrow{-1e^{-}} R \xrightarrow{N \longrightarrow N} R$$

$$\Rightarrow Chemical decomposition$$

reversible reduction to the 11π anion.³

REFERENCES

- 1. R.T. Boeré, K.H. Moock and M. Parvez, Z. Anorg. Allg. Chem., 620, 000 (1994). In press.
- 2. R.T. Oakley, <u>Can. J. Chem.</u>, 71, 1775 (1993).
- R.T. Boeré, K.H. Moock, S. Derrick, W. Hoogerdijk, K. Preuss, J. Yip and M. Parvez, Can. J. Chem., 71, 473 (1993).